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An experiment story:
Helping Syrian refugees find work

Cash skill -training Motivational support
(Arm 1) (Arm 2) (Arm 3)

How do we improve employment when resources
are limited?




Digital health interventions

$\
ﬁ Provide targeted texts to promote
exercise.




More examples of adaptive experiments
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Malaria
d Trial

V.,
gete([f treatment assignment policy, where the goal 1s to use a participant’s survey responses to
determine which charity to expose them to in a donation solicitation. The design balances two
competing objectives: optimizing the outcomes for the subjects in the experiment (“cumulatA(M ERICAN ECONOMIC REVIEW
regret minimization”) and gathering data that will be most useful for policy learning, that\}so L. 105  NO. 2. FEBRUARY 2015
for learning an assignment rule that will maximize welfare if used after the experiment (“simple” ' -

regret minimization”). We evaluate alternative experimental designs by collecting pilot d4f#p. 609-45)

and then conducting a simulation study. Next, we implement our selected algorithm. Finally,

we perform a second simulation study anchored to the collected data that evaluates the benefits

of the algorithm we chose. Our first result is that the value of a learned policy in this setting

is higher when data is collected via a uniform randomization rather than collected adaptively

using standard cumulative regret minimization or policy learning algorithms. We propose a
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The Multi-armed bandit framework

K arms with reward distributions P,, ..., Py and Ey.p[Y]=u,

e At round ¢,
e Pullarm A, € o {Al, Yi, ... A, Yt_l}, and observe reward Y,

o [f A, =a, Weobservereward Y, =pu, + ¢,

T
Minimize regret: Tu* —[E ( Z Yt) §* = maxpu,
=1

a

Thompson 1933, Robbins 1952
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The linear contextual bandit
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Confidence interval for a'u after bandit
experiment.
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The linear contextual bandit

yt=xtT,u+€t xed, yeR
x, depends on {x;, ¥, %, V5, -ces X, 15V, }

d 1=K Data set is not i.i.d.

Confidence interval for a'u after bandit
experiment.
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Empirical Coverage

Confidence Interval Comparison

Arm 2: Coverage vs Nominal

1.00 -

0.95 -

0.90 -

0.85 -

o

(00)

o
]

o

~

Ul
1

0.70 -

0.65 -

0.60 -

—&— Normal approx
—0— Conservative bound
--=-- Target

0.75 0.80 0.85 0.90 0.95
Nominal Coverage (1 - a)

Average Cl Length

Arm 2: Cl Length vs Nominal
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[Lai and Wei 1982

The Annals of Statistics
1982, Vol. 10, No. 1, 154-166

LEAST SQUARES ESTIMATES IN STOCHASTIC REGRESSION
MODELS WITH APPLICATIONS TO IDENTIFICATION AND
CONTROL OF DYNAMIC SYSTEMS

By Tze LEuNG LAr' aND CHING ZoNG WEI®

Columbia University and University of Maryland

Strong consistency and asymptotic normality of least squares estimates
in stochastic regression models are established under certain weak assump-
tions on the stochastic regressors and errors. We discuss applications of these
results to interval estimation of the regression parameters and to recursive
on-line identification and control schemes for linear dynamic systems.

1. Introduction. Consider the multiple regression model
(1.1) Yn=LB1xn1+ o+ + Bp1Xnp+n, n=1,2, «-.

where the ¢, are unobservable random errors, 8, - -+ , 8, are unknown parameters, and y,
is the observed response corresponding to the design levels x,;, ---, x,. Let X, =
( )" and let X,, = (x;;) 1< Y, = ( )’. Th

Xnly **°, Xnp an e n — xl_] Isi=n,l<ysp, 4 n = Y1y *** s Yn) . en

(12) bn — (bnly *tty bnp), - (Xéxn)_lxr,zYn

denotes the least squares estimate of 8 = (8, ---, 8,) " based on the observations xi, yi,
-+« , X, Yn, assuming that X, X, is nonsingular. Throughout the sequel we shall assume
that {e,} is a martingale difference sequence with respect to an increasing sequence of
o-fields {%.}; ie., &, is %, -measurable and E(¢,| %.-1) = 0 for every n. An important




Lai and Wei Stability

THEOREM 3. Suppose that in the regression model (1.1), {e.} is a martingale
difference sequence with respect to an increasing sequence of o-fields { #,} such that
(1.6) and (4.1) hold. Moreover, assume for each n that the design vector X, = (Xn1, ++ -,
Xnp)' at stage n is F,-;-measurable and that there exists a non-random positive definite
symmetric matrix B, for which

(4.2) B, (}!xx/)"*—pl, and
(43) maXi<i<n " B;IX,' II —p 0.

Then the least squares estimate b, of B has an asymptotically normal distribution in the
sense that

(4-4) (Z'll xix:') l/z(bn o B) D N(O, Uzlp)’

where —p denotes convergence in distribution.




Lai and Wei Stability
.

THEOREM 3. Suppose that in the regression model (1.1), {e.} is a martingale
difference sequence with respect to an increasing sequence of o-fields { % | such that |
(1.6) and (4.1) hold. Moreover, assume for each n that the design vector X, = (Xn1, **+, ST /

—» 1 for all arms.



Stability for bandits

A bandit algorithm & is called weakly-stable if there exists non-random n;jT(Qi )

A
1) P 1 forall a€[K]
ny ()

For any stable bandit algorithm &/ we have

\/na,T
— (d, — 1) & H(O,1)

O

T
ztzl Yf ) 1At=a AD . . )
— 6- 1s any consistent estimator of o~.




Stability for bandits

A bandit algorithm & is called weakly-stable if there exists non-random n;:T(ﬂ )

na,T(‘Q[) P
n; ()

> 1

For any stable bandit algorithm & we have

=



Are popular bandit algorithms stable?

Upper Confidence Bound? Thompson Sampling?



Thompson Sampling

o Atroundr=1, ....T

1
Sampled ,~ N\ i, 4,
o Pie U, (l’ta,t—l 1 + - )

o Pick A, ~argmax@,
a

fl,,—1 = Sample mean of arm a at 7 — 1

n,,., = #armpulls forarm a at7— 1

Prior for both arms are Normal(0,1). Equal arm means u; =, = 1.0
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Kalvit and Zeevi 2021





Upper Confidence Bound

Algorithm 1 UCB algorithm

1: Pull once each of the K arms in the first K iterations.

2 for t =K +1,...,T —1do Two arm UCB with Gaussian rewards
3: Compute the UCB boundary

2log T

Ng. t

UCB(a,t) := fiq ¢ + \/
Equal arm means pu; = pu, = 1.0

4: Choose arm A; given by

Aiy1 = argmax UCB(a, t)

5. end for
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Distribution of n1,t/t at t = 6896
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Fan, Glynn' 22
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UCB is stable

/ Theorem [KZ’ 24, QKZ’24]
 The UCB algorithm is stable:

na,T P
(1/\/n* + \/ A2/2 log T)
A, =u*—pu, and n* is unique solution to
: =1
Z 2
‘ <\/ Tin* + \/ TA2/2 log T)
\/ na,T

\ Consequently, - (/“ta —ﬂa) 4 4(0,1)

0]




Simulation study

Arm 1 Error Distribution
True Mean = 1.0
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Precise regret bound

—2
na
- ——1f — 0 N, R (1/\/;@* +\/ AZ/2log T)
(1/ n \/ A2/2 log T)

k K —2
Regret = Z AJEn, ; ~ Z A - <1/\/; +\/A2/210g T)

a=1 a=1



A precise regret guarantee

/ Theorem [QKZ'24]

The regret of the UCB algorithm satisfies

Regret

K
Za=l Aa |

-

-2
(1/ n* + \/Ag/z log T)

1

S

2log logT

/

2 logT

Worst case regret 2 \/ KTlogT

A

a

2logT KlogT
Rgeret — Z 25" when A, >>\/ =iy

(Not minimax optimal)

T




Stability in Contextual bandit

‘. R

Theorem [QKZ'24]

For a contextual bandit problem with | 2| = K contexts, the UCB algorithm

is stable, and consequently

~1/2
( Z xixiT> (fiLs — n) .y (0, 6°1,)

N Y

Rate of convergence of CLT can be derived.




A pictorial proot
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All UCB’s are equal

UCB(1,7) ~ UCBQ2,T) ~ ......... ~ UCB(k, T)
_ 2log T _ 2log T _ 2log T
//ll + A, ,[42 + N eeeenoee ~ //tk +
nyr Ny T Ny T
nl,T + nz,T + ...... + nk T —

Want to understand {Vla,T}ae[K]



UCB to noiseless-UCB

UCB(1,7) ~ UCBQ2,T) ~ ......... ~ UCB(k, T)
2loglog T 2loe T 2loglog T 2loe T
Uy E chis + = R v X U T chis + =
nr T Ny .
nl,T + nz’T + ...... + nk,T — T

Law of Iterated Logarithm



UCB to noiseless-UCB

UCB(1,7) ~ UCBQ2,T) ~ ......... ~ UCB(k, T)
2log T 2log T
//tl + A ~ ,l/lk +
n T Ny
nl,T + nZ,T + ...... + nk T —

K variables {n, r},cx1, Kequations



UCB is stable

ﬁheorem [KZ’ 24, QKZ’24]
 The UCB algorithm is stable:

na,T P
(1/\/n* + \/ A2/2 log T)
A, =u*—pu, and n* is unique solution to
: =1
Z 2
‘ <\/ Tin* + \/ TA2/2 log T)
\/ na,T

\ Consequently, - (/“ta —ﬂa) 4 4(0,1)

0]




How about Thompson Sampling?

Can we stabilize 1t?



Thompson Sampling
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Thompson Sampling

Thompson Sampling
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Stable Thompson Sampling [BSK’25]

Coverage Plot for Arm 1
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Summary:

. Under stability, non-iid data behaves like iid data.
- Thompson Sampling is not stable, we can stabilize it.

- UCB is stable, a new proof technique.
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Stability in Contextual bandit
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Theorem [QKZ'24]

For a contextual bandit problem with | 2| = K contexts, the UCB algorithm

is stable, and consequently

~1/2
( Z xixiT> (fiLs — n) .y (0, 6°1,)

N Y

Rate of convergence of CLT can be derived.




Rate of convergence of CLT: A Berry Essen bound

/T heorem [QKZ'24] \

The UCB algorithm satisfies

1

2log logT \*
sup | P(Z, € A) — P(N(0,1) € A) | <
Aa 2 logT




Rate of convergence of CLT: A Berry Essen bound

e

The UCB algorithm satisfies

ae(0,1),a€[K]

SUp P(/’ta S CIa,a) T (1 T a)| S (

2log logT

2 logT

and P(NO,1) > z,,,) = a/2

1

)E

\






