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 Cash 
(Arm 1)

skill -training 
     (Arm 2)

Motivational support 
            (Arm 3)

How do we improve employment when resources 
are limited? 



Digital health interventions 

Provide targeted texts to promote 
 exercise.



More examples of adaptive experiments

Is afa
ff

Two goaaaa
lea



The Multi-armed bandit framework
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K arms with reward distributions P1, …, PK and EY∼Pa
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Tμ⋆ − 𝔼 (
T

∑
t=1

Yt)Minimize regret: μ⋆ = max
a

μa
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The linear contextual bandit

yt = xt
⊤μ + ϵt       xt ∈ 𝒳,     yt ∈  ℝ

xt depends on {x1, y1, x2, y2, …, xt−1, yt−1}

K-armed bandit:     xt ∈ {e1, . . . , ek}
μ = (μ1, μ2, …, μk)⊤
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Debiasing methods:    Zhang and Zhang 2013, Deshpande et al. 2017, 
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Weighted Z-estimator:    Zhang et al. 2020, Bibaut et al. 2021, Hadad et al. 
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Flexible, but inference might be weak.

Our approach:    Inference is much better when the  bandit 
 algorithm has structure. 



Lai and Wei 1982



Lai and Wei Stability



Lai and Wei Stability

na,T(𝒜


 𝒜
p

⟶ 1(4.2) for bandit: for all arms.

Under stability, non-iid data behaves like iid data (asymptotically) !

Under stability, we can use standard tools available for iid data !



Stability for bandits

A bandit algorithm 𝒜 is called weakly-stable if there exists non-random n⋆
a,T(𝒜)

na,T(𝒜)
n⋆

a,T(𝒜)

For any stable bandit algorithm 𝒜 we have

na,T

̂σ (μ̄a − μa) d⟶ 𝒩(0,1)

p
⟶ 1

μ̄a =
∑T

t=1 Yt ⋅ 1At=a

na,T
̂σ2 is any consistent estimator of σ2 .

for all a ∈ [K]



Stability for bandits

A bandit algorithm 𝒜 is called weakly-stable if there exists non-random n⋆
a,T(𝒜)

na,T(𝒜)
n⋆

a,T(𝒜)

For any stable bandit algorithm 𝒜 we have

na,T

̂σ (μ̄a − μa) d⟶ 𝒩(0,1)

p
⟶ 1

μ̄a −
̂σ ⋅ zα/2

na,T
, μ̄a +

̂σ ⋅ zα/2

na,T
is an asymptotically exact 1 − α CI .



Are popular bandit algorithms stable? 

Thompson Sampling?Upper Confidence Bound?



Thompson Sampling

Equal arm means μ1 = μ2 = 1.0Prior for both arms are Normal(0,1) .

• Sample 

• Pick

θa,t ∼ 𝒩 (μ̄a,t−1,
1

1 + na,t−1 )
At ∼ arg max

a
θa,t

μ̄a,t−1 = Sample mean of arm a at t − 1na,t−1 = # armpulls for arm a at t − 1

• At round  = 1, …. Tt



Thompson Sampling is not-stable

Kalvit and Zeevi 2021





Upper Confidence Bound

Two arm UCB with Gaussian rewards

Equal arm means μ1 = μ2 = 1.0



Upper confidence bound

Fan, Glynn' 22






UCB is stable

The UCB algorithm is stable:
p

⟶ 1
na,T

(1/ n⋆ + Δ2
a/2 log T)

−2

Δa = μ⋆ − μa, and n⋆ is unique solution to

∑
a

1

( T/n⋆ + TΔ2
a/2 log T)

2 = 1

na,T

̂σ (μ̄a − μa) d⟶ 𝒩(0,1)Consequently,

Theorem [KZ’ 24,  QKZ’24] 



Simulation study



Precise regret bound

𝔼
na,T

(1/ n⋆ + Δ2
a/2 log T)

−2 − 1 ⟶ 0 𝔼na,T ≈ (1/ n⋆ + Δ2
a/2 log T)

−2

Regret =
k

∑
a=1

Δa𝔼na,T ≈
K

∑
a=1

Δa ⋅ (1/ n⋆ + Δ2
a/2 log T)

−2



A precise regret guarantee

Worst case regret ≳ KT logT (Not minimax optimal)

Rgeret → ∑
μa≠μ⋆

2logT
Δa

when Δa ≫
KlogT

T
.

Regret

∑K
a=1 Δa ⋅ (1/ n⋆ + Δ2

a/2 log T)
−2 − 1 ≲

2log logT
2 logT

The regret of the UCB algorithm satisfies

Theorem [QKZ’24] 



Stability in Contextual bandit

Rate of convergence of CLT can be derived.

For a contextual bandit problem with |𝒳 | = K contexts, the UCB algorithm

is stable, and consequently

(
n

∑
i=1

xix⊤
i )

−1/2

(μ̄LS − μ) d⟶ 𝒩 (0, σ2Id)

Theorem [QKZ’24] 



A pictorial proof



Stability of UCB

UCB(a, t) = μ̄a,t−1 +
2logT
na,t−1


MP4 converted with https://ezgif.com/gif-to-mp4
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UCB(1,T) ≈ UCB(2,T) ≈ ……… ≈ UCB(k, T)

μ̄1 +
2 log T

n1,T
≈ μ̄2 +

2 log T
n2,T

≈ ……… ≈ μ̄k +
2 log T

nk,T

n1,T + n2,T + …… + nk,T = T

All UCB’s are equal

Want to understand {na,T}a∈[K]



UCB(1,T) ≈ UCB(2,T) ≈ ……… ≈ UCB(k, T)

μ1 ± 2 log log T
n1,T

+
2 log T

n1,T
≈ ……… ≈ μk ± 2 log log T

nk,T
+

2 log T
nk,T

n1,T + n2,T + …… + nk,T = T

UCB to noiseless-UCB

Law of Iterated Logarithm



UCB to noiseless-UCB

UCB(1,T) ≈ UCB(2,T) ≈ ……… ≈ UCB(k, T)

μ1 +
2 log T

n1,T
≈ ……… ≈ μk +

2 log T
nk,T

n1,T + n2,T + …… + nk,T = T

K variables  ,    K equations{na,T}a∈[K]



UCB is stable

Theorem [KZ’ 24,  QKZ’24] 
The UCB algorithm is stable:

p
⟶ 1

na,T

(1/ n⋆ + Δ2
a/2 log T)

−2

Δa = μ⋆ − μa, and n⋆ is unique solution to

∑
a

1

( T/n⋆ + TΔ2
a/2 log T)

2 = 1

na,T

̂σ (μ̄a − μa) d⟶ 𝒩(0,1)Consequently,



Can we stabilize it? 

How about Thompson Sampling?



Thompson Sampling
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θa,t ∼ 𝒩 (μ̄a,t−1,
1
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At = arg max
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• Pick

θa,t ∼ 𝒩 (μ̄a,t−1,
1

1 + na,t−1 )
At = arg max

a
θa,t

•

• Pick 

θa,t = μ̄a,t−1 +
Zt

1 + na,t−1

At = arg max
a

θa,t

Zt     is Gaussian



Thompson Sampling

• Sample 

• Pick

θa,t ∼ 𝒩 (μ̄a,t−1,
1

1 + na,t−1 )
At = arg max

a
θa,t

•

• Pick 

θa,t = μ̄a,t−1 +
γTZt

1 + na,t−1

At ∼ arg max
a

θa,t

2 log log T ≪ γT



Stable Thompson Sampling [BSK’25]

• Sample 

• Pick 

θa,t ∼ 𝒩 (μ̄a,t−1,
γT

1 + na,t−1 )
At ∼ arg max

a
θa,t

2 log log T ≪ γT ≪ log TK = 2



Summary: 

•   Under stability, non-iid data behaves like iid data.  

•   Thompson Sampling is not stable, we can stabilize it. 

•   UCB is stable, a new proof technique. 
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Stability in Contextual bandit

Rate of convergence of CLT can be derived.

For a contextual bandit problem with |𝒳 | = K contexts, the UCB algorithm

is stable, and consequently

(
n

∑
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xix⊤
i )
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Rate of convergence of CLT:  A Berry Essen bound

sup
A,a

ℙ(Za ∈ A) − P(𝒩(0,1) ∈ A) ≲ ( 2log logT
2 logT )

1
6

The UCB algorithm satisfies

Here, Za =
na,T

σ (μ̄a − μa)

Theorem [QKZ’24] 



Rate of convergence of CLT: A Berry Essen bound

sup
α∈(0,1),a∈[K]

ℙ(μa ∈ CIa,α) − (1 − α) ≲ ( 2log logT
2 logT )

1
6

The UCB algorithm satisfies

Here, CIa,α = μ̄a ∓
̂σ ⋅ zα/2

na,T
and ℙ(N(0,1) ≥ zα/2) = α/2




